High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate.

نویسندگان

  • Debabrata Pradhan
  • Farnaz Niroui
  • K T Leung
چکیده

The present work demonstrates the fabrication and performance of an enzymatic glucose biosensor based on ZnO nanowires (NWs) deposited on a Au-coated polyester (PET) substrate. Electrodeposition of ZnO NWs on the conducting PET substrate was carried out at 70 degrees C in an aqueous electrolyte consisting of zinc nitrate mixed with potassium chloride. Glucose oxidase (GOx) was subsequently immobilized on the as-synthesized ZnO NWs, and the electrocatalytic properties of GOx-immobilized ZnO NWs were evaluated by amperometry. The resulting GOx/ZnO-NWs/Au/PET bioelectrode exhibits excellent electrocatalytic performance with a high sensitivity of 19.5 muA mM(-1) cm(-2), a low Michaelis-Menten constant of 1.57 mM, and a fast response time of <5 s for the amperometric detection of glucose. The present study illustrates the feasibility of realizing light-weight, flexible, high-performance sensing devices using ZnO NWs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective potentiometric determination of uric acid with uricase immobilized on ZnO nanowires

In this study, a potentiometric uric acid biosensor was fabricated by immobilization of uricase onto zinc oxide (ZnO) nanowires. Zinc oxide nanowires with 80-150 nm in diameter and 900 nm to 1.5 μm in lengths were grown on the surface of a gold coated flexible plastic substrate. Uricase was electrostatically immobilized on the surface of well aligned ZnO nanowires resulting in a sensitive, sele...

متن کامل

ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin

In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method. The ZnO nanorods were immobilized with penicillinase enzyme using the physical adsorption approach in combination with N-5-azido-2-nitrobenzoylo...

متن کامل

Electrochemical l-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase

In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lac...

متن کامل

Habit-modifying additives and their morphological consequences on photoluminescence and glucose sensing properties of ZnO nanostructures, grown via aqueous chemical synthesis

Generally, the anisotropic shape of inorganic nano-crystal can be influenced by one or more of different parameters i.e. kinetic energy barrier, temperature, time, and the nature of the capping molecules. Here, different surfactants acting as capping molecules were used to assist the aqueous chemical growth of zinc oxide (ZnO) nanostructures on Au coated glass substrates. The morphology, crysta...

متن کامل

Effect of Urea on the Morphology of Co3O4 Nanostructures and Their Application for Potentiometric Glucose Biosensor

In this study, an effect of different concentrations of urea on the morphology of cobalt oxide (Co3O4) nanostructures was investigated. The Co3O4 nanostructures are fabricated on gold coated glass substrate by the hydrothermal method. The morphological and structural characterization was performed by scanning electron microscopy, and X-ray diffraction techniques. The Co3O4 nanostructures exhibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 2 8  شماره 

صفحات  -

تاریخ انتشار 2010